Thursday, 9 November 2017

Flytting Gjennomsnitt Variabel Periode


Flytende gjennomsnitt En teknisk analyseperiode som betyr gjennomsnittsprisen på et sikkerhetssystem over en angitt tidsperiode (den vanligste varen 20, 30, 50, 100 og 200 dager), som brukes for å oppdage prissettende trender ved å flette ut store svingninger. Dette er kanskje den mest brukte variabelen i teknisk analyse. Flytte gjennomsnittlige data brukes til å lage diagrammer som viser om en aksjekurs er trending opp eller ned. De kan brukes til å spore daglige, ukentlige eller månedlige mønstre. Hver nye dag (eller uker eller måneder) tall legges til gjennomsnittet, og de eldste tallene blir tapt, og gjennomsnittet beveger seg over tid. Generelt. Jo kortere tidsrammen som brukes, desto mer flyktig vil prisene vises, for eksempel har 20 dagers glidende gjennomsnittlige linjer en tendens til å bevege seg opp og ned over 200 dagers glidende gjennomsnittlige linjer. kijun line multirule system STARC band fordrevne glidende gjennomsnittlig Keltner kanal McClellan Oscillator utløser linje Opphavsretts kopi 2017 WebFinance, Inc. Alle rettigheter reservert. Uautorisert duplisering, helt eller delvis, er strengt forbudt. Legg til en trend eller flytte gjennomsnittlig linje til et diagram Gælder for: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mer. Mindre Hvis du vil vise datatrender eller flytte gjennomsnitt i et diagram du opprettet. Du kan legge til en trendlinje. Du kan også utvide en trendlinje utover de faktiske dataene dine for å bidra til å forutsi fremtidige verdier. For eksempel prognoser følgende lineære trendlinje to kvartaler fremover og viser tydelig en oppadgående trend som ser lovende ut på fremtidig salg. Du kan legge til en trendlinje på et 2-D-diagram som ikke er stablet, inkludert område, strekk, kolonne, linje, lager, scatter og boble. Du kan ikke legge til en trendlinje på en stablet, 3-D, radar-, kake-, overflate - eller doughnutdiagram. Legg til en trendlinje På diagrammet ditt, klikk på dataserien som du vil legge til en trendlinje eller glidende gjennomsnitt. Treningslinjen starter på det første datapunktet i dataserien du velger. Sjekk Trendline-boksen. For å velge en annen type trendlinje, klikk på pilen ved siden av Trendline. og klikk deretter Eksponentiell. Linjær prognose. eller to perioder som går i gjennomsnitt. For flere trendlinjer, klikk på Flere alternativer. Hvis du velger Flere alternativer. Klikk på alternativet du vil ha i Format Trendline-ruten under Trendline Options. Hvis du velger Polynomial. skriv inn den høyeste effekten for den uavhengige variabelen i bestillingsboksen. Hvis du velger Flytende gjennomsnitt. skriv inn antall perioder som skal brukes til å beregne det bevegelige gjennomsnittet i Period-boksen. Tips: En trendlinje er mest nøyaktig når den R-kvadrert verdien (et tall fra 0 til 1 som viser hvor tett de estimerte verdiene for trendlinjen tilsvarer dine faktiske data) er på eller nær 1. Når du legger til en trendlinje for dataene dine , Excel beregner automatisk sin R-kvadrert verdi. Du kan vise denne verdien på diagrammet ditt ved å merke verdien for Vis R-kvadrat i kartboksen (Format Trendline-panel, Trendlinjealternativer). Du kan lære mer om alle trendlinjealternativene i seksjonene nedenfor. Linjær trendlinje Bruk denne typen trendlinje til å skape en rettstrekningslinje for enkle lineære datasett. Dine data er lineære hvis mønsteret i datapunktene ser ut som en linje. En lineær trendlinje viser vanligvis at noe øker eller avtar med jevn hastighet. En lineær trendlinje bruker denne ligningen til å beregne de minste firkantene som passer for en linje: hvor m er skråningen og b er avskjæringen. Følgende lineære trendlinje viser at kjølesalg har økt konsekvent over en 8-års periode. Legg merke til at R-kvadratverdien (et tall fra 0 til 1 som viser hvor tett de estimerte verdiene for trendlinjen tilsvarer dine faktiske data) er 0.9792, som passer godt til linjen til dataene. Viser en best egnet buet linje, denne trendlinjen er nyttig når frekvensen av endring i dataene øker eller senker raskt og deretter ut. En logaritmisk trendlinje kan bruke negative og positive verdier. En logaritmisk trendlinje bruker denne ligningen til å beregne de minste firkantene som passer gjennom punkter: hvor c og b er konstanter og ln er den naturlige logaritmen-funksjonen. Følgende logaritmiske trendlinje viser forventet populasjonsvekst hos dyr i et fast romområde, hvor befolkningen utjevnet som plass for dyrene, ble redusert. Vær oppmerksom på at R-kvadratverdien er 0.933, som er en relativt god passform til linjen til dataene. Denne trendlinjen er nyttig når dataene dine svinger. For eksempel, når du analyserer gevinster og tap over et stort datasett. Ordren til polynomet kan bestemmes av antall svingninger i dataene eller av hvor mange svinger (bakker og daler) dukker opp i kurven. Typisk har en Order 2 polynomisk trendlinje bare en bakke eller dal, en Ordre 3 har en eller to åser eller daler, og en ordre 4 har opptil tre åser eller daler. En polynom eller krøllete trendlinje bruker denne ligningen til å beregne de minste firkantene som passer gjennom punkter: hvor b og er konstanter. Følgende Order 2 polynomiske trendlinje (en bakke) viser forholdet mellom kjørehastighet og drivstofforbruk. Legg merke til at R-kvadratverdien er 0.979, som ligger nær 1 slik at linjene passer godt til dataene. Viser en buet linje, denne trendlinjen er nyttig for datasett som sammenligner målinger som øker med en bestemt hastighet. For eksempel, akselerasjonen av en racerbil med intervaller på 1 sekund. Du kan ikke opprette en strømtrendelinje hvis dataene inneholder null eller negative verdier. En kraft trendlinje bruker denne ligningen til å beregne de minste firkantene som passer gjennom punkter: hvor c og b er konstanter. Merk: Dette alternativet er ikke tilgjengelig når dataene dine inneholder negative eller nullverdier. Følgende avstandsmålingsdiagram viser avstanden i meter etter sekunder. Strømtendenslinjen viser tydelig den økende akselerasjonen. Merk at R-kvadratverdien er 0.986, som er en nesten perfekt passform av linjen til dataene. Viser en buet linje, denne trendlinjen er nyttig når dataverdiene stiger eller faller ved stadig økende priser. Du kan ikke opprette en eksponentiell trendlinje hvis dataene inneholder null eller negative verdier. En eksponentiell trendlinje bruker denne ligningen til å beregne de minste firkantene som passer gjennom punkter: hvor c og b er konstanter og e er grunnlaget for den naturlige logaritmen. Følgende eksponensielle trendlinje viser den reduserende mengden av karbon 14 i en gjenstand som den aldrer. Vær oppmerksom på at R-kvadratverdien er 0.990, noe som betyr at linjen passer perfekt til dataene. Flytte Gjennomsnittlig trendlinje Denne trendlinjen utgjør svingninger i data for å vise et mønster eller en trend tydeligere. Et glidende gjennomsnitt bruker et bestemt antall datapunkter (angitt av Period-alternativet), gjennomsnitt dem, og bruker gjennomsnittsverdien som et punkt i linjen. For eksempel, hvis Perioden er satt til 2, brukes gjennomsnittet av de to første datapunktene som det første punktet i den bevegelige gjennomsnittlige trendlinjen. Gjennomsnittet av det andre og det tredje datapunktet brukes som det andre punktet i trenden, etc. En glidende gjennomsnittlig trendlinje bruker denne ligningen: Antall poeng i en glidende gjennomsnittlig trendlinje er det totale antall poeng i serien, minus nummer du angir for perioden. I et scatterdiagram er trendlinjen basert på rekkefølgen av x-verdiene i diagrammet. For et bedre resultat, sorter x-verdiene før du legger til et bevegelige gjennomsnitt. Følgende glidende gjennomsnittlig trendlinje viser et mønster i antall boliger solgt over en periode på 26 uker. Innføring i ARIMA: Nonseasonal modeller ARIMA (p, d, q) prognoser likning: ARIMA-modeller er i teorien den mest generelle klassen av modeller for å prognose en tidsserie som kan gjøres for å være 8220stationary8221 ved differensiering (om nødvendig), kanskje i forbindelse med ikke-lineære transformasjoner som logging eller deflatering (om nødvendig). En tilfeldig variabel som er en tidsserie er stasjonær hvis dens statistiske egenskaper er konstante over tid. En stasjonær serie har ingen trend, dens variasjoner rundt sin gjennomsnitt har en konstant amplitude, og den svinger på en konsistent måte. det vil si at kortsiktige tilfeldige tidsmønstre alltid ser like ut i statistisk forstand. Den sistnevnte tilstanden betyr at dets autokorrelasjoner (korrelasjoner med sine egne tidligere avvik fra gjennomsnittet) forblir konstante over tid, eller tilsvarende, at dets effektspektrum forblir konstant over tid. En tilfeldig variabel i dette skjemaet kan ses som en kombinasjon av signal og støy, og signalet (hvis det er tydelig) kan være et mønster av rask eller langsom, gjennomsnittlig reversering eller sinusformet svingning eller rask veksling i tegn , og det kan også ha en sesongbestemt komponent. En ARIMA-modell kan ses som en 8220filter8221 som forsøker å skille signalet fra støyen, og signalet blir deretter ekstrapolert inn i fremtiden for å oppnå prognoser. ARIMA-prognose-ligningen for en stasjonær tidsserie er en lineær (dvs. regresjonstype) ekvation hvor prediktorene består av lag av de avhengige variable ogor lagene av prognosefeilene. Det er: Forutsigbar verdi for Y en konstant og en vektet sum av en eller flere nylige verdier av Y og eller en vektet sum av en eller flere nylige verdier av feilene. Hvis prediktorene kun består av forsinkede verdier av Y. Det er en ren autoregressiv (8220self-regressed8221) modell, som bare er et spesielt tilfelle av en regresjonsmodell, og som kunne være utstyrt med standard regresjonsprogramvare. For eksempel er en førsteordens autoregressiv (8220AR (1) 8221) modell for Y en enkel regresjonsmodell der den uavhengige variabelen bare er Y forsinket med en periode (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Hvis noen av prediktorene er lags av feilene, er en ARIMA-modell det IKKE en lineær regresjonsmodell, fordi det ikke er mulig å spesifisere 8220last period8217s error8221 som en uavhengig variabel: feilene må beregnes fra tid til annen når modellen er montert på dataene. Fra et teknisk synspunkt er problemet med å bruke forsinkede feil som prediktorer at modellen8217s spådommer ikke er lineære funksjoner av koeffisientene. selv om de er lineære funksjoner av tidligere data. Så koeffisienter i ARIMA-modeller som inkluderer forsinkede feil må estimeres ved ikke-lineære optimaliseringsmetoder (8220hill-klatring8221) i stedet for bare å løse et system av ligninger. Akronymet ARIMA står for Auto-Regressive Integrated Moving Average. Lags av den stasjonære serien i prognosekvotasjonen kalles kvotoregressivequot vilkår, lags av prognosefeilene kalles quotmoving averagequot vilkår, og en tidsserie som må differensieres for å bli stillestående, sies å være en quotintegratedquot-versjon av en stasjonær serie. Tilfeldige gange og tilfeldige trendmodeller, autoregressive modeller og eksponentielle utjevningsmodeller er alle spesielle tilfeller av ARIMA-modeller. En nonseasonal ARIMA-modell er klassifisert som en quotARIMA (p, d, q) kvotemodell hvor: p er antall autoregressive termer, d er antall ikke-sekundære forskjeller som trengs for stasjonar, og q er antall forsinkede prognosefeil i prediksjonsligningen. Forutsigelsesligningen er konstruert som følger. Først, la y angi den forskjellen på Y. Det betyr: Merk at den andre forskjellen på Y (d2-saken) ikke er forskjellen fra 2 perioder siden. Snarere er det den første forskjellen-av-første forskjellen. som er den diskrete analogen til et andre derivat, det vil si den lokale akselerasjonen av serien i stedet for sin lokale trend. Når det gjelder y. Den generelle prognosekvasjonen er: Her er de bevegelige gjennomsnittsparametrene (9528217s) definert slik at deres tegn er negative i ligningen, etter konvensjonen innført av Box og Jenkins. Noen forfattere og programvare (inkludert R programmeringsspråket) definerer dem slik at de har pluss tegn i stedet. Når faktiske tall er koblet til ligningen, er det ingen tvetydighet, men det er viktig å vite hvilken konvensjon programvaren bruker når du leser utgangen. Ofte er parametrene benevnt der av AR (1), AR (2), 8230 og MA (1), MA (2), 8230 etc. For å identifisere den aktuelle ARIMA modellen for Y. begynner du ved å bestemme differensordren (d) trenger å stasjonærisere serien og fjerne bruttoegenskapene til sesongmessighet, kanskje i forbindelse med en variansstabiliserende transformasjon som logging eller deflating. Hvis du stopper på dette punktet og forutser at den forskjellige serien er konstant, har du bare montert en tilfeldig tur eller tilfeldig trendmodell. Den stasjonære serien kan imidlertid fortsatt ha autokorrelerte feil, noe som tyder på at noen antall AR-termer (p 8805 1) og eller noen nummer MA-termer (q 8805 1) også er nødvendig i prognosekvasjonen. Prosessen med å bestemme verdiene p, d og q som er best for en gitt tidsserie, vil bli diskutert i senere avsnitt av notatene (hvis koblinger er øverst på denne siden), men en forhåndsvisning av noen av typene av nonseasonal ARIMA-modeller som ofte oppstår, er gitt nedenfor. ARIMA (1,0,0) førstegangs autoregressiv modell: Hvis serien er stasjonær og autokorrelert, kan den kanskje forutsies som et flertall av sin egen tidligere verdi, pluss en konstant. Forutsigelsesligningen i dette tilfellet er 8230 som er Y regressert i seg selv forsinket med en periode. Dette er en 8220ARIMA (1,0,0) constant8221 modell. Hvis gjennomsnittet av Y er null, vil ikke det konstante begrepet bli inkludert. Hvis hellingskoeffisienten 981 1 er positiv og mindre enn 1 i størrelsesorden (den må være mindre enn 1 i størrelsesorden dersom Y er stasjonær), beskriver modellen gjennomsnittsreferanseadferd hvor neste periode8217s verdi skal anslås å være 981 1 ganger som langt unna gjennomsnittet som denne perioden8217s verdi. Hvis 981 1 er negativ, forutser det middelreferanseadferd med skifting av tegn, dvs. det forutsier også at Y vil være under gjennomsnittlig neste periode hvis den er over gjennomsnittet denne perioden. I en andre-ordregivende autoregressiv modell (ARIMA (2,0,0)), ville det være et Y t-2 begrep til høyre også, og så videre. Avhengig av tegnene og størrelsene på koeffisientene, kunne en ARIMA (2,0,0) modell beskrive et system hvis gjennomsnitts reversering foregår i sinusformet oscillerende mote, som bevegelse av en masse på en fjær som er utsatt for tilfeldige støt . ARIMA (0,1,0) tilfeldig tur: Hvis serien Y ikke er stasjonær, er den enkleste modellen for den en tilfeldig turmodell, som kan betraktes som et begrensende tilfelle av en AR (1) modell der autoregressive koeffisienten er lik 1, det vil si en serie med uendelig sakte gjennomsnittlig reversering. Forutsigelsesligningen for denne modellen kan skrives som: hvor den konstante sikt er den gjennomsnittlige period-til-periode-endringen (dvs. den langsiktige driften) i Y. Denne modellen kan monteres som en ikke-avskjæringsregresjonsmodell der Første forskjell på Y er den avhengige variabelen. Siden den inneholder (bare) en ikke-sesongforskjell og en konstant periode, er den klassifisert som en quotARIMA (0,1,0) modell med constant. quot. Den tilfeldige tur-uten-drift modellen ville være en ARIMA (0,1, 0) modell uten konstant ARIMA (1,1,0) forskjellig førsteordens autoregressiv modell: Hvis feilene i en tilfeldig turmodell er autokorrelert, kan problemet løses ved å legge til et lag av den avhengige variabelen til prediksjonsligningen - - dvs ved å regresse den første forskjellen på Y i seg selv forsinket med en periode. Dette vil gi følgende prediksjonsligning: som kan omarrangeres til Dette er en førsteordens autoregressiv modell med en rekkefølge av ikke-soneforskjeller og en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) uten konstant enkel eksponensiell utjevning: En annen strategi for korrigering av autokorrelerte feil i en tilfeldig gangmodell er foreslått av den enkle eksponensielle utjevningsmodellen. Husk at for noen ikke-stationære tidsserier (for eksempel de som viser støyende svingninger rundt et sakte varierende gjennomsnitt), utfører ikke den tilfeldige turmodellen så vel som et glidende gjennomsnittsverdier av tidligere verdier. Med andre ord, i stedet for å ta den nyeste observasjonen som prognosen for neste observasjon, er det bedre å bruke et gjennomsnitt av de siste observasjonene for å filtrere ut støy og mer nøyaktig anslå det lokale gjennomsnittet. Den enkle eksponensielle utjevningsmodellen bruker et eksponentielt vektet glidende gjennomsnitt av tidligere verdier for å oppnå denne effekten. Forutsigelsesligningen for den enkle eksponensielle utjevningsmodellen kan skrives i en rekke matematisk ekvivalente former. hvorav den ene er den såkalte 8220error correction8221 skjemaet, der den forrige prognosen er justert i retning av feilen den gjorde: Fordi e t-1 Y t-1 - 374 t-1 per definisjon kan dette omskrives som : som er en ARIMA (0,1,1) - out-konstant prognosekvasjon med 952 1 1 - 945. Dette betyr at du kan passe en enkel eksponensiell utjevning ved å angi den som en ARIMA (0,1,1) modell uten konstant, og den estimerte MA (1) - koeffisienten tilsvarer 1-minus-alfa i SES-formelen. Husk at i SES-modellen er gjennomsnittsalderen for dataene i 1-periode fremover prognosene 1 945. Det betyr at de vil ha en tendens til å ligge bak trender eller vendepunkter med ca 1 945 perioder. Det følger at gjennomsnittlig alder av dataene i 1-periode fremover prognosene for en ARIMA (0,1,1) uten konstant modell er 1 (1 - 952 1). For eksempel, hvis 952 1 0,8 er gjennomsnittsalderen 5. Når 952 1 nærmer seg 1, blir ARIMA (0,1,1) uten konstant modell et veldig langsiktig glidende gjennomsnitt og som 952 1 nærmer seg 0 blir det en tilfeldig tur uten drivmodell. What8217s den beste måten å korrigere for autokorrelasjon: legge til AR-vilkår eller legge til MA-vilkår I de to foregående modellene ble problemet med autokorrelerte feil i en tilfeldig turmodell løst på to forskjellige måter: ved å legge til en forsinket verdi av differensierte serier til ligningen eller legge til en forsinket verdi av prognosen feil. Hvilken tilnærming er best En tommelfingerregel for denne situasjonen, som vil bli nærmere omtalt senere, er at positiv autokorrelasjon vanligvis behandles best ved å legge til et AR-uttrykk for modellen og negativ autokorrelasjon vanligvis behandles best ved å legge til en MA term. I forretnings - og økonomiske tidsserier oppstår negativ autokorrelasjon ofte som en artefakt av differensiering. (Generelt reduserer differensiering positiv autokorrelasjon og kan til og med føre til en bryter fra positiv til negativ autokorrelasjon.) Så, ARIMA (0,1,1) modellen, der differensiering er ledsaget av en MA-term, brukes hyppigere enn en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel eksponensiell utjevning med vekst: Ved å implementere SES-modellen som en ARIMA-modell, får du faktisk en viss fleksibilitet. Først og fremst er estimert MA (1) - koeffisient tillatt å være negativ. Dette tilsvarer en utjevningsfaktor som er større enn 1 i en SES-modell, som vanligvis ikke er tillatt i SES-modellprosedyren. For det andre har du muligheten til å inkludere en konstant periode i ARIMA-modellen hvis du ønsker det, for å estimere en gjennomsnittlig ikke-null trend. ARIMA-modellen (0,1,1) med konstant har prediksjonsligningen: Forventningene for en periode fremover fra denne modellen er kvalitativt lik SES-modellen, bortsett fra at bane av de langsiktige prognosene vanligvis er en skrånende linje (hvis skråning er lik mu) i stedet for en horisontal linje. ARIMA (0,2,1) eller (0,2,2) uten konstant lineær eksponensiell utjevning: Linjære eksponentielle utjevningsmodeller er ARIMA-modeller som bruker to ikke-soneforskjeller i sammenheng med MA-termer. Den andre forskjellen i en serie Y er ikke bare forskjellen mellom Y og seg selv forsinket av to perioder, men det er den første forskjellen i den første forskjellen - dvs. Y-endringen i Y i periode t. Således er den andre forskjellen på Y ved periode t lik (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En annen forskjell på en diskret funksjon er analog med et andre derivat av en kontinuerlig funksjon: det måler kvoteringsberegningsquot eller quotcurvaturequot i funksjonen på et gitt tidspunkt. ARIMA-modellen (0,2,2) uten konstant forutser at den andre forskjellen i serien er lik en lineær funksjon av de to siste prognosefeilene: som kan omarrangeres som: hvor 952 1 og 952 2 er MA (1) og MA (2) koeffisienter. Dette er en generell lineær eksponensiell utjevningsmodell. i hovedsak det samme som Holt8217s modell, og Brown8217s modell er et spesielt tilfelle. Den bruker eksponensielt vektede glidende gjennomsnitt for å anslå både et lokalt nivå og en lokal trend i serien. De langsiktige prognosene fra denne modellen konvergerer til en rett linje hvis skråning avhenger av den gjennomsnittlige trenden observert mot slutten av serien. ARIMA (1,1,2) uten konstant fuktet trend lineær eksponensiell utjevning. Denne modellen er illustrert i de tilhørende lysbildene på ARIMA-modellene. Den ekstrapolerer den lokale trenden i slutten av serien, men flater ut på lengre prognoshorisonter for å introdusere et konservatismedokument, en praksis som har empirisk støtte. Se artikkelen om hvorfor Damped Trend worksquot av Gardner og McKenzie og quotgolden Rulequot-artikkelen av Armstrong et al. for detaljer. Det er generelt tilrådelig å holde fast i modeller der minst en av p og q ikke er større enn 1, dvs. ikke prøv å passe på en modell som ARIMA (2,1,2), da dette sannsynligvis vil føre til overfitting og kvadrat-faktorquot problemer som er omtalt nærmere i notatene om den matematiske strukturen til ARIMA-modellene. Implementering av regneark: ARIMA-modeller som de som er beskrevet ovenfor, er enkle å implementere på et regneark. Forutsigelsesligningen er bare en lineær ligning som refererer til tidligere verdier av originale tidsserier og tidligere verdier av feilene. Dermed kan du sette opp et ARIMA prognose regneark ved å lagre dataene i kolonne A, prognoseformelen i kolonne B, og feilene (data minus prognoser) i kolonne C. Forutsigelsesformelen i en typisk celle i kolonne B ville ganske enkelt være et lineært uttrykk som refererer til verdier i forrige rader av kolonner A og C, multiplisert med de relevante AR - eller MA-koeffisientene lagret i celler andre steder på regnearket.

No comments:

Post a Comment